417 research outputs found

    Localization of neurones expressing the gap junction protein Connexin45 within the adult spinal dorsal horn: a study using Cx45-eGFP reporter mice.

    Get PDF
    Connexin (Cx) proteins localized to neuronal and glial syncytia provide the ultrastructural components for intercellular communication via gap junctions. In this study, a Cx45 reporter mouse model in which the Cx45 coding sequence is substituted for enhanced green fluorescent protein (eGFP) was used to characterize Cx45 expressing neurones within adult mouse spinal cord. eGFP-immunoreactive (eGFP-IR) cells were localized at all rostro-caudal levels to laminae I-III of the dorsal horn (DH), areas associated with nociception. The neuronal rather than glial phenotype of these cells in DH was confirmed by co-localisation of eGFP-IR with the neuronal marker NeuN. Further immunohistochemical studies revealed that eGFP-IR interneurones co-express the calcium-binding protein calbindin, and to a lesser extent calretinin. In contrast, eGFP-IR profiles did not co-localize with either parvalbumin or GAD-67, both of which are linked to inhibitory interneurones. Staining with the primary afferent markers isolectin-B4 (IB4) and calcitonin gene-related peptide revealed that eGFP-IR somata within laminae I-III receive close appositions from the former, presumed non-peptidergic nociceptive afferents of peripheral origin. The presence of 5-HT terminals in close apposition to eGFP-IR interneuronal somata suggests modulation via descending pathways. These data demonstrate a highly localized expression of Cx45 in a population of interneurones within the mouse superficial dorsal horn. The implications of these data in the context of the putative role of Cx45 and gap junctions in spinal somatosensory processing and pain are discussed

    Physiologic regulation of heart rate and blood pressure involves connexin 36-containing gap junctions

    Get PDF
    Chronically elevated sympathetic nervous activity underlies many cardiovascular diseases. Elucidating the mechanisms contributing to sympathetic nervous system output may reveal new avenues of treatment. The contribution of the gap junctional protein connexin 36 (Cx36) to the regulation of sympathetic activity and thus blood pressure and heart rate was determined, using a mouse with specific genetic deletion of Cx36. Ablation of the Cx36 protein was confirmed in sympathetic preganglionic neurons of Cx36 knockout (KO) mice. Telemetric analysis from conscious Cx36 KO mice revealed higher variance in heart rate and blood pressure during rest and activity compared to wildtype (WT) mice, and smaller responses to chemoreceptor activation when anesthetized. In the working heart brainstem preparation of the Cx36 KO mouse, respiratory-coupled sympathetic nerve discharge was attenuated and responses to chemoreceptor stimulation and noxious stimulation were blunted compared to WT mice. Using whole cell patch recordings, sympathetic preganglionic neurons in spinal cord slices of Cx36 KO mice displayed lower levels of spikelet activity compared to WT mice, indicating reduced gap junction coupling between neurons. Cx36 deletion therefore disrupts normal regulation of sympathetic outflow with effects on cardiovascular parameters

    Mechanism of inhibition of connexin channels by the quinine derivative N-benzylquininium

    Get PDF
    The anti-malarial drug quinine and its quaternary derivative N-benzylquininium (BQ+) have been shown to inhibit gap junction (GJ) channels with specificity for Cx50 over its closely related homologue Cx46. Here, we examined the mechanism of BQ+ action using undocked Cx46 and Cx50 hemichannels, which are more amenable to analyses at the single-channel level. We found that BQ+ (300 Β΅M–1 mM) robustly inhibited Cx50, but not Cx46, hemichannel currents, indicating that the Cx selectivity of BQ+ is preserved in both hemichannel and GJ channel configurations. BQ+ reduced Cx50 hemichannel open probability (Po) without appreciably altering unitary conductance of the fully open state and was effective when added from either extracellular or cytoplasmic sides. The reductions in Po were dependent on BQ+ concentration with a Hill coefficient of 1.8, suggesting binding of at least two BQ+ molecules. Inhibition by BQ+ was voltage dependent, promoted by hyperpolarization from the extracellular side and conversely by depolarization from the cytoplasmic side. These results are consistent with binding of BQ+ in the pore. Substitution of the N-terminal (NT) domain of Cx46 into Cx50 significantly impaired inhibition by BQ+. The NT domain contributes to the formation of the wide cytoplasmic vestibule of the pore and, thus, may contribute to the binding of BQ+. Single-channel analyses showed that BQ+ induced transitions that did not resemble pore block, but rather transitions indistinguishable from the intrinsic gating events ascribed to loop gating, one of two mechanisms that gate Cx channels. Moreover, BQ+ decreased mean open time and increased mean closed time, indicating that inhibition consists of an increase in hemichannel closing rate as well as a stabilization of the closed state. Collectively, these data suggest a mechanism of action for BQ+ that involves modulation loop gating rather than channel block as a result of binding in the NT domain

    Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture

    Get PDF
    INTRODUCTION: Metastasis involves the emigration of tumor cells through the vascular endothelium, a process also known as diapedesis. The molecular mechanisms regulating tumor cell diapedesis are poorly understood, but may involve heterocellular gap junctional intercellular communication (GJIC) between tumor cells and endothelial cells. METHOD: To test this hypothesis we expressed connexin 43 (Cx43) in GJIC-deficient mammary epithelial tumor cells (HBL100) and examined their ability to form gap junctions, establish heterocellular GJIC and migrate through monolayers of human microvascular endothelial cells (HMVEC) grown on matrigel-coated coverslips. RESULTS: HBL100 cells expressing Cx43 formed functional heterocellular gap junctions with HMVEC monolayers within 30 minutes. In addition, immunocytochemistry revealed Cx43 localized to contact sites between Cx43 expressing tumor cells and endothelial cells. Quantitative analysis of diapedesis revealed a two-fold increase in diapedesis of Cx43 expressing cells compared to empty vector control cells. The expression of a functionally inactive Cx43 chimeric protein in HBL100 cells failed to increase migration efficiency, suggesting that the observed up-regulation of diapedesis in Cx43 expressing cells required heterocellular GJIC. This finding is further supported by the observation that blocking homocellular and heterocellular GJIC with carbenoxolone in co-cultures also reduced diapedesis of Cx43 expressing HBL100 tumor cells. CONCLUSION: Collectively, our results suggest that heterocellular GJIC between breast tumor cells and endothelial cells may be an important regulatory step during metastasis

    Pathologic and Phenotypic Alterations in a Mouse Expressing a Connexin47 Missense Mutation That Causes Pelizaeus-Merzbacher–Like Disease in Humans

    Get PDF
    Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47), which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher–like disease 1 (PMLD1), a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue

    Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis

    Get PDF
    RATIONALE: Gap junctions are membrane channels formed by an array of connexins which links adjacent cells realizing an electro- metabolic synapse. Connexin-mediated communication is crucial in the regulation of cell growth, differentiation, and development. The activation and proliferation of phenotypically altered fibroblasts are central events in the pathogenesis of idiopathic pulmonary fibrosis. We sought to evaluate the role of connexin-43, the most abundant gap-junction subunit in the human lung, in the pathogenesis of this condition. METHODS: We investigated the transcription and protein expression of connexin-43 and the gap-junctional intercellular communication (GJIC) in 5 primary lung fibroblast lines derived from normal subjects (NF) and from 3 histologically proven IPF patients (FF). RESULTS: Here we show that connexin-43 mRNA was significantly reduced in FF as demonstrated by standard and quantitative RT-PCR. GJIC was functionally evaluated by means of flow-cytometry. In order to demonstrate that dye spreading was taking place through gap junctions, we used carbenoxolone as a pharmacological gap-junction blocker. Carbenoxolone specifically blocked GJIC in our system in a concentration dependent manner. FF showed a significantly reduced homologous GJIC compared to NF. Similarly, GJIC was significantly impaired in FF when a heterologous NF line was used as dye donor, suggesting a complete defect in GJIC of FF. CONCLUSION: These results suggest a novel alteration in primary lung fibroblasts from IPF patients. The reduced Cx43 expression and the associated alteration in cell-to-cell communication may justify some of the known pathological characteristic of this devastating disease that still represents a challenge to the medical practice

    Gap Junction Mediated Intercellular Metabolite Transfer in the Cochlea Is Compromised in Connexin30 Null Mice

    Get PDF
    Connexin26 (Cx26) and connexin30 (Cx30) are two major protein subunits that co-assemble to form gap junctions (GJs) in the cochlea. Mutations in either one of them are the major cause of non-syndromic prelingual deafness in humans. Because the mechanisms of cochlear pathogenesis caused by Cx mutations are unclear, we investigated effects of Cx30 null mutation on GJ-mediated ionic and metabolic coupling in the cochlea of mice. A novel flattened cochlear preparation was used to directly assess intercellular coupling in the sensory epithelium of the cochlea. Double-electrode patch clamp recordings revealed that the absence of Cx30 did not significantly change GJ conductance among the cochlear supporting cells. The preserved electrical coupling is consistent with immunolabeling data showing extensive Cx26 GJs in the cochlea of the mutant mice. In contrast, dye diffusion assays showed that the rate and extent of intercellular transfer of multiple fluorescent dyes (including a non-metabolizable D-glucose analogue, 2-NBDG) among cochlear supporting cells were severely reduced in Cx30 null mice. Since the sensory epithelium in the cochlea is an avascular organ, GJ-facilitated intercellular transfer of nutrient and signaling molecules may play essential roles in cellular homeostasis. To test this possibility, NBDG was used as a tracer to study the contribution of GJs in transporting glucose into the cochlear sensory epithelium when delivered systemically. NBDG uptake in cochlear supporting cells was significantly reduced in Cx30 null mice. The decrease was also observed with GJ blockers or glucose competition, supporting the specificity of our tests. These data indicate that GJs facilitate efficient uptake of glucose in the supporting cells. This study provides the first direct experimental evidence showing that the transfer of metabolically-important molecules in cochlear supporting cells is dependent on the normal function of GJs, thereby suggesting a novel pathogenesis process in the cochlea for Cx-mutation-linked deafness

    Two novel connexin32 mutations cause early onset X-linked Charcot-Marie-Tooth disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>X-linked Charcot-Marie Tooth (CMT) is caused by mutations in the connexin32 gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions.</p> <p>Methods</p> <p>We describe two novel mutations in the connexin32 gene in two Norwegian families.</p> <p>Results</p> <p>Family 1 had a c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247. This probably results in a shorter non-functional protein structure. Affected individuals had an early age at onset usually in the first decade. The symptoms were more severe in men than women. All had severe muscle weakness in the legs. Several abortions were observed in this family. Family 2 had a c.536 G>A (C179Y) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade. Muscle wasting was severe and correlated with muscle weakness in legs. The men and one woman also had symptom from their hands.</p> <p>The neuropathy is demyelinating and the nerve conduction velocities were in the intermediate range (25–49 m/s). Affected individuals had symmetrical clinical findings, while the neurophysiology revealed minor asymmetrical findings in nerve conduction velocity in 6 of 10 affected individuals.</p> <p>Conclusion</p> <p>The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode.</p
    • …
    corecore